

News & Events

Home > News & Events > News & Stories > Prof. Kanzieper and collaborators'.....

More:

News & Stories

Events

News & Stories

Prof. Kanzieper and collaborators' paper was published in PRL.

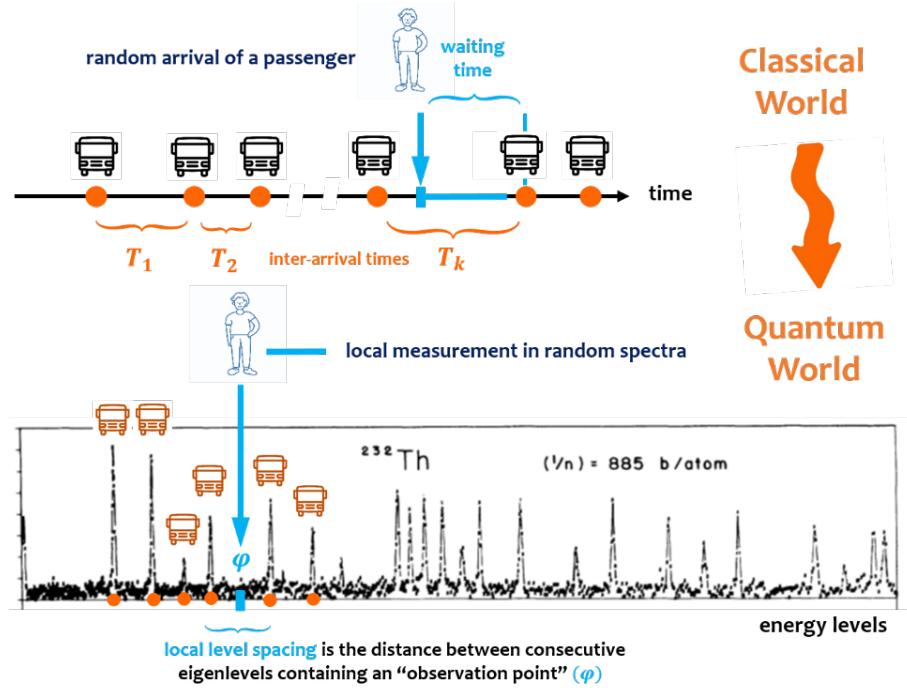
Professor Eugene Kanzieper, from the Faculty of Sciences at HIT Holon Institute of Technology, published a paper in the prestigious Physical Review Letters journal.

Randomness in a **classical world** is a source of many counter-intuitive statements known as probability paradoxes. They reflect a conflict between our (naive) intuition and probabilistic thinking. The underlying meaning of paradoxes is revealed only by scrutiny.

The **inspection paradox**, also known as the waiting-time paradox, is possibly the most notable and striking example of the counter-intuitive effects of randomness. Documented in the literature over a century ago (1922), it claims that a passenger who arrives at a bus stop at a random time may, on average, wait longer (and sometimes **much longer!**) than half the average time between consecutive buses. This counter-intuitive statement is rooted in two facts: (1) being affected by unexpected disruptions on the roads, a bad traffic is not deterministic; (2) randomness of bus arrivals implies that a passenger, who approaches a bus stop, is more likely to arrive between successive buses that are far apart. This observation is crucial to understanding the inspection paradox.

The “intuitive” answer for the mean waiting time (half the average interval between successive buses) indirectly assumes that traffic is deterministic and not affected by unexpected road disruptions such as traffic jams, road accidents, malfunctioning traffic lights, etc. (photo: Shutterstock)

A similar line of reasoning applies to yet another probability paradox – the **friendship paradox** – discovered in 1991. Summarized in the statement that “on average, your friends have more friends than you do,” the paradox challenges the perceptions of many individuals who tend to believe that they have more friends than their friends. A resolution of the friendship paradox comes from the observation that people with lots of friends are more likely to be among your friends.



The friendship paradox can be used to build an effective vaccination policy by targeting people who are more likely to spread it: <https://tinyurl.com/friendship-paradox-video>. (photo: Shutterstock)

Mathematically, the inspection paradox and the friendship paradox have the same origin: the **sampling bias**.

In their PRL paper, Prof. Eugene Kanzieper and collaborators bring the inspection paradox to the **quantum world**. Having defined a new spectral statistics – **local** intervals between eigenlevels of a quantum

particle (which is a spectral equivalent of the time between arrivals of successive buses as observed by a random passenger, see an explanation in the illustration below) – the authors study a counter-intuitive statistics of local level spacings.

In the bus paradox (upper panel), a randomly arriving passenger plays a rôle of an inspector measuring a time interval between two neighboring buses – the one that was missed and the one that will be boarded. In random spectra (lower panel), the measured energy levels (spikes on the graph) are equivalent to a sequence of busses; the observation point φ mimics the moment of passenger's arrival at a bus stop, while the distance between consecutive spikes containing the observation point φ is the local level spacing.

Making use of advanced techniques of the Random Matrix Theory, they show that the mean values of local level spacings are described by **distinguished sequences of universal numbers** that have been explicitly determined. These sequences constitute “fingerprints” of the symmetries and the type of universality (ordered or chaotic) of a single- or many-body quantum system.

The authors provide a proof of concept, by performing high-precision numerical experiments for three paradigmatic systems of quantum chaology: high-lying zeros of the Riemann zeta function on the critical line, spectra of rectangular billiards, and random spectra of the Sachdev-Ye-Kitaev model that has become a popular venue for studies of quantum many-body physics.

Abstract of the article in English:

<https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.220401>

Statistics of Local Level Spacings in Single- and Many-Body Quantum Chaos

We introduce a notion of local level spacings and study their statistics within a random-matrix-theory approach. In the limit of infinite-dimensional random matrices, we determine universal sequences of mean local spacings and of their ratios which uniquely identify the global symmetries of a quantum system and its internal—chaotic or regular—dynamics. These findings, which offer a new framework to monitor single- and many-body quantum systems, are corroborated by numerical experiments performed for zeros of the Riemann zeta function, spectra of irrational rectangular billiards, and many-body spectra of the Sachdev-Ye-Kitaev Hamiltonians.

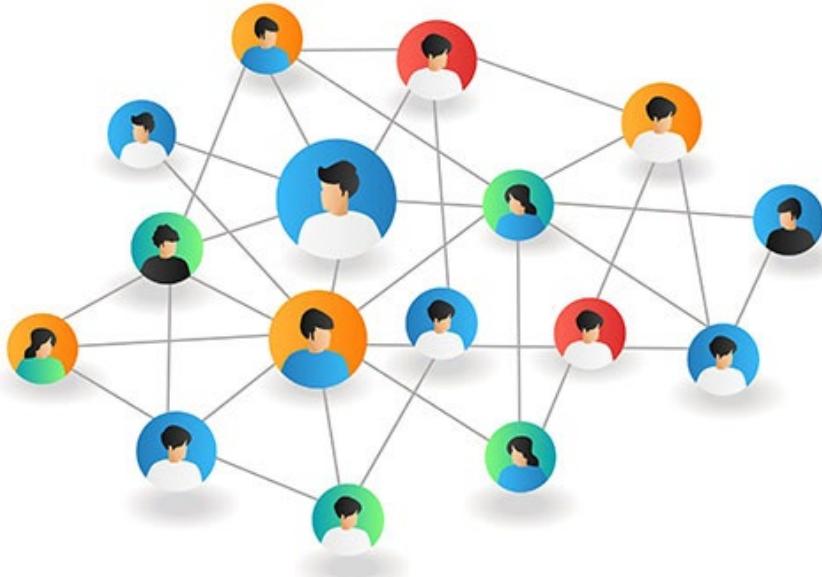
This study was undertaken in cooperation with Dr. Peng Tian (research fellow at Université Côte d'Azur, Nice, France) and Dr. Roman Riser (postdoctoral fellow at Texas Tech University, Lubbock, United States). Peng and Roman previously held postdoctoral positions within the School of Mathematical Sciences at H.I.T. The Israel Science Foundation supported the research as part of the project "Deciphering Noise in Spectra of Complex Systems: A Random Matrix Theory Perspective" (ISF Grant No. 428/18).

[Original essay in Hebrew appears below]

*6404

מאמר של פרופ' קנציבר ו עמיתיו פורסם בכתב העת היוקרתי PRL

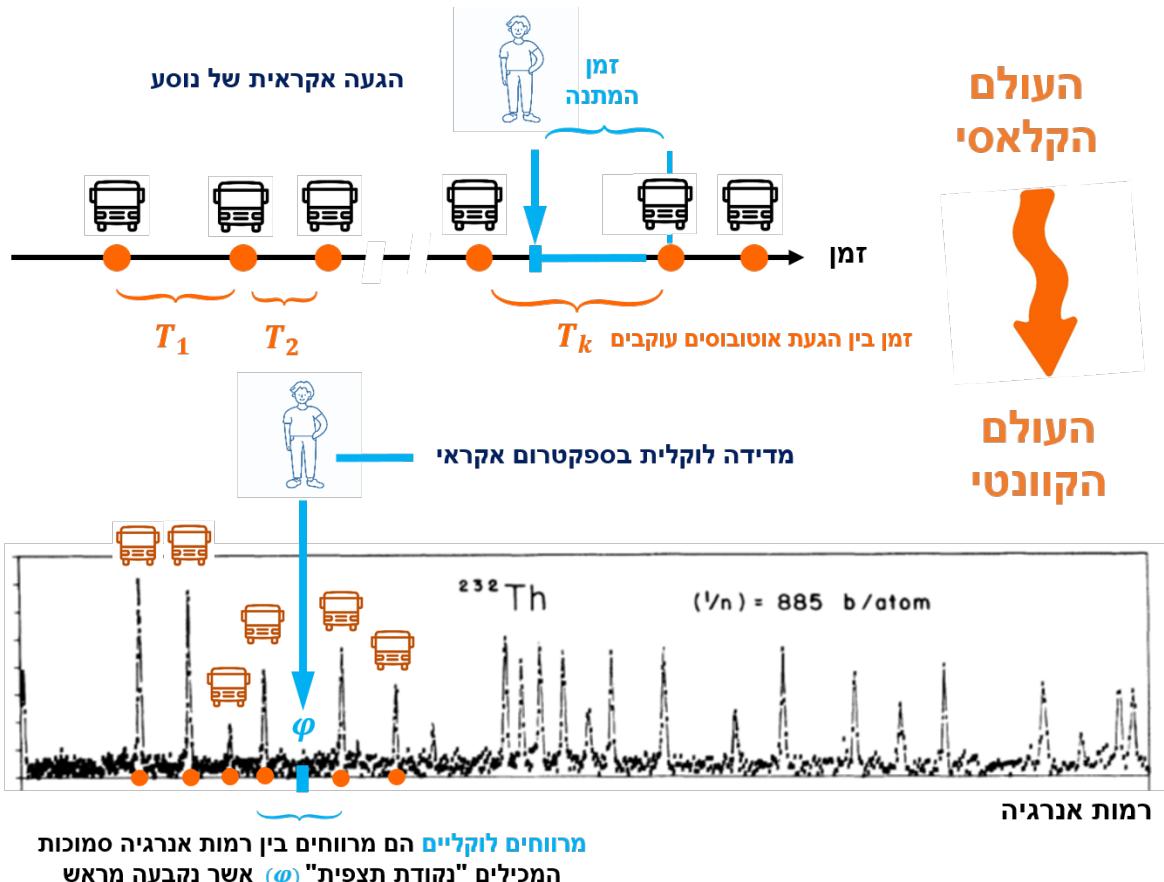
אקראיות בעולם הקליני היא מקור לאמירות רבות אשר מנוגדות לאינטואיציה, הנקראות פרדוקסים הסתברותיים. הם משקפים קונפליקט בין האינטואיציה (התמיימה) שלנו לבין החשיבה ההסתברותית. המשמעות המוסתורת של פרדוקסים מתגלה רק אחרי חקירה מעמיקה.



פרדוקס של זמן ה证实ה: ה证实ה "איינטואיטיבית" עבר זמן ההמתנה הממוצע (מחצית מהזמן הממוצע בין אוטובוסים עוקבים) מניה בעקיפון כי תנועת הרכבים דטרמיניסטית ולא מושפעת מшибושים בלתי צפויים בכבישים כגון פקקים, תאונות דרכים, רמזורים לא תקינים ועוד' (תמונה: .(Shutterstock

פרדוקס הבדיקה, הידוע גם כפרדוקס זמן ה证实ה המתועד בספרות המדעית לפני כמאה שנה (1922), הוא אולי הדוגמה הבולטת ביותר לתופעת מנוגדות אינטואיציה של אקראיות. לפי פרדוקס הבדיקה, נסע שmagiu לתחנת אוטובוס ברגע אקראי עlol, בממוצע, לחפות יותר (ולפעמים הרבה)! ממחצית מהזמן הממוצע בין הנסיעה אוטובוסים עוקבים. המקרה לטענה "בלתי הגיונית" זאת נסתה בשתי עובדות: (1) תנועת אוטובוסים מושפעת מшибושים בלתי צפויים בכבישים וכתוצאה היא אינה דטרמיניסטית; (2) האקראיות בהגעת אוטובוסים לתחנה גורמת לכך שנוסף אשר מגיע לתחנה באקראי

יגיע בסבירות גבוהה יותר בין אוטובוסים עוקבים שמרוחקים יותר אחד מהשני.


הסביר דומה חל על פרדוקס הסטברוטי נוסף – **פרדוקס החברות** – שהתגלה בשנת 1991. הפרדוקס אשר מסוכם באמירה "בממציע, לחברים שלך יש יותר חברים מך", מ>Showcases את תפיסותיהם של אנשים רבים שנוטים להאמין כי יש להם יותר חברים מאשר לחבריהם שלהם. הפתרון של פרדוקס החברות נובע מהעובדת שאנשים עם הרבה חברים נוטים יותר להיות בין החברים שלך.

פרדוקס החברות מאפשר לבנות מדיניות חישונית עיליה על ידי מתן חיסונים לאנשים שיש להם סיכוי גבוה יותר להדבק אחים: <https://tinyurl.com/friendship-paradox-video> (תמונה: Shutterstock)

מבחן מתמטית, לפרדוקס הבקרה ולפרדוקס החברות יש מקור זהה: **הטיה מוגנית**.

במאמר שפורסם בכתב העת PRL, פרופ' יוגין קנציפר ו עמיתיו מביאים את פרדוקס הבקרה **לעולם הקונטטי**. הרעיון המרכזי הוא בהגדרת מודל ספקטורי חדש – מרוחחים **локליים** בין רמות האנרגיה של חלקיק קוונטי – אשר מקביל ספקטורי זמן בין הגעת אוטובוסים עוקבים, ראו הסבר באIOR שלහן. מהחקירה, שנעשתה באמצעות שימוש בתורה של מטריצות אקרואיות, עולה כי – בדומה לפרדוקס הבקרה עבור זמני המתנה בעולם הקלاسي – המודל הספקטורי החדש מראה גם הוא תכונות מנוגדות אינטואיציה. בין היתר, החוקרים הצליחו להראות כי ממוצעים של מרוחחים **локליים** בין רמות האנרגיה מתוארים על ידי **סדרות מספריות מיוחדות** אשר מהוות "תביעות אצבע" המעודת על סימטריות וסוג האוניברסליות (מוסדר או כאוטי) של מערכת קוונטנית.

קיים הדמיון בין פרזוקס הבדיקה בעולם הקלאי ובעולם הקוונטי. הפלט העליון: בפרזוקס זמן המנתנה, נושא שmagui באקראי משחק תפקיד של מפקח אשר מודד למשה את מרוחה הזמן בין שני אוטובוסים עוקבים – זה שהוחמץ וזה שיגיע אחריו. הפלט התחתון: בספקטרום אקראי, רמות האנרגיה של חלקיקן קוונטי הנמדדות בניסוי ("ריזוננסים" בגרה) מהוות מקביל ספקטרלי לנקודות זמן בהן מגיעים אוטובוסים לתחנה; המרוחה בין שני ריזוננסים סמוכים אשר מכיל את "נקודות הצפויות" ψ היא המרוחה הילוקלי בין רמות האנרגיה אשר נבחנו במאמרו של פרופ' קנציפר ועמיתיו.

לצד דיוון עיוני, החוקרים מספקים הוכחה ניסויית לרעיון זה באמצעות ניסויים נומריים שבוצעו באשכול מחשבים עם תפוקה גבוהה. בין המערכות שנבחנו – אפסים של פונקציית זטא של רימן (אשר מהוות הפרדיגמה של כאוס קוונטי), ספקטרום של ביליארד מלביי וספקטרום אקראי של המודל שhapך למודל מרכזי בפיזיקה קוונטית של מערכות כאוטיות בעלות גופים רבים. Sachdev-Ye-Kitaev.

המחקר בוצע בשיתוף פעולה עם ד"ר פנג טיאן (Dr. Peng Tian) – עמית מחקר באוניברסיטת קווט ד'אזור בניס, צרפת (Université Côte d'Azur, Nice, France) ועם ד"ר רומן ריזר (Dr. Roman Riser) – עמית מחקר באוניברסיטת טקסס טק בלאבק, ארצות הברית (Texas Tech University, Lubbock, USA). בזמן ביצוע הממחקר, שניהם היו פוסטדוקטורנטים בבית הספר למדעי המתמטיקה ב-T.T.U. הממחקר נתמך על ידי הקרן הלאומית למדע במסגרת הפרויקט "פענוח רעשים בספקטרה של מערכות מורכבות: פרספקטיבית של תיאוריות מטריצות אקראיות" (מענק 428/18 (ISF)).

Statistics of Local Level Spacings in Single- and Many-Body Quantum Chaos

ABSTRACT

We introduce a notion of local level spacings and study their statistics within a random-matrix-theory approach. In the limit of infinite-dimensional random matrices, we determine universal sequences of mean local spacings and of their ratios which uniquely identify the global symmetries of a quantum system and its internal—chaotic or regular—dynamics. These findings, which offer a new framework to monitor single- and many-body quantum systems, are corroborated by numerical experiments performed for zeros of the Riemann zeta function, spectra of irrational rectangular billiards, and many-body spectra of the Sachdev-Ye-Kitaev Hamiltonian.