

News & Events

[Home](#) > [News & Events](#) > [News & Stories](#) > Prof. Kanzieper and collaborators'.....

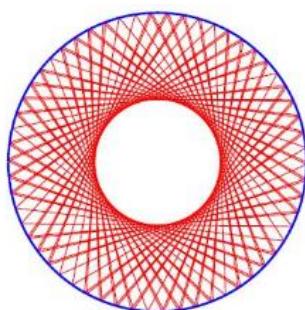
More:

Events

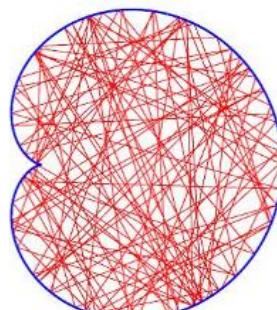
News & Stories

HIT & HOT NEWS

News & Stories

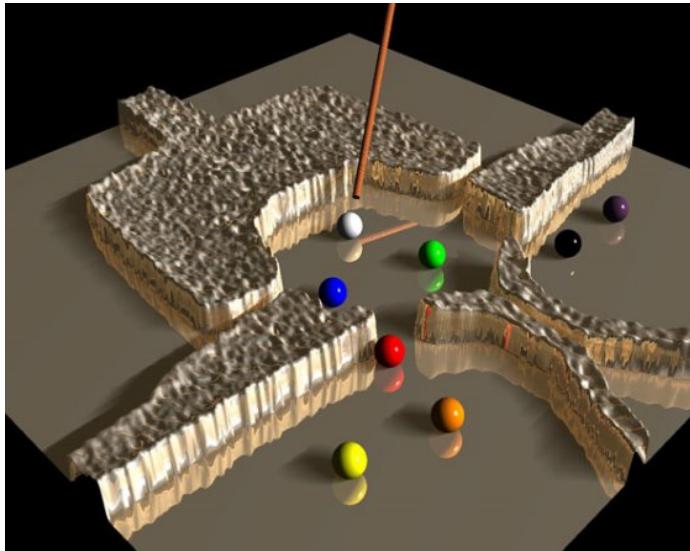

Prof. Kanzieper and collaborators' paper selected as 'Editor's Suggestion' in PRL

Have you ever played snooker – a game arranged on an elongated, billiard-shaped table? In a recent paper, published in the prestigious Physical Review Letters and highlighted as an "Editor's Suggestion" on the journal website, Prof. [Eugene Kanzieper](#) and collaborators – Dr. Roman Riser and Dr. Vladimir Osipov – deal with the billiards, albeit quantum rather than classical.



From the point of view of researchers - mathematicians and physicists – a billiard is a dynamical system in which a particle (ball) moves along a straight line and gets specularly reflected from a wall without loss of speed. The angle of incidence before the collision is equal to the angle of reflection after collision with a wall (the law of reflection). The nature and properties of a ball trajectory is dictated by the law of reflection and by a specific form of a billiard.

There are two types of billiards: ordered (regular) and chaotic. A shape of an ordered billiard possesses a high symmetry (think of a circle or a square). Following a ball trajectory in an ordered billiard, one discovers that it looks perfectly regular.


Regular geodesics of a ball in a round billiard

Chaotic geodesics of a ball in a cardioid billiard

On the contrary, a shape of a chaotic billiard – exemplified by a cardioid billiard in the figure above – has a lower symmetry, if any. In this case, a ball trajectory appears to be irregular, and a particle tends to uniformly explore the entire billiard. In addition, a distance between two balls with tiny difference in their initial velocities will diverge very rapidly (exponentially) in time. These two properties are a hallmark of classical chaos.

What will happen if one reduces a billiard size to such an extent that a ball acquires properties of a quantum particle (e.g., starts to behave as an electron described by a wave function)? A similar question: What will happen if one replaces a particle billiard with a wave billiard (e.g., a microwave billiard)? Will it be now possible to determine – through various measurements – whether a quantum (or wave) billiard has an ordered or a chaotic shape? This is one of the major problems in the field of quantum chaos. It is important both theoretically (in quantum mechanics, the Heisenberg uncertainty principle makes the idea of a particle trajectory inappropriate) and practically (modern nanotechnologies make it possible to produce and control quantum billiards).

An illustration of a “quantum billiard”

One of the ways to distinguish between two types of billiards – ordered or chaotic – is to study statistical properties of energy levels of a quantum particle evolving in a billiards. About a decade ago, extensive numerical simulations have suggested that the energy levels in regular quantum billiards produce a noise similar to that of a classical particle performing Brownian motion. In contrast, in chaotic billiards fluctuating energy levels are anticipated to produce a white-like noise.

So far, the results inferred from numerical simulations have not received a satisfactory theoretical explanation. In their paper, Prof. [Eugene Kanzieper](#) and his colleagues have used a Random Matrix Theory approach to analyze the noise contained in the spectra of quantum chaotic billiards.

Abstract of the article in English: (<https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.204101>)

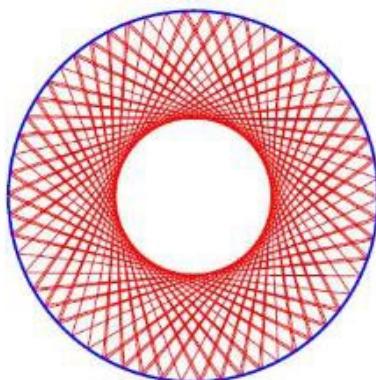
Power Spectrum of Long Eigenlevel Sequences in Quantum Chaotic Systems

We present a nonperturbative analysis of the power spectrum of energy level fluctuations in fully chaotic quantum structures. Focusing on systems with broken time-reversal symmetry, we employ a finite- N random matrix theory to derive an exact multidimensional integral representation of the power spectrum. The $N \rightarrow \infty$ limit of the exact solution furnishes the main result of this study—a universal, parameter-free prediction for the power spectrum expressed in terms of a fifth Painlevé transcendent. Extensive numerics lends further support to our theory which, as discussed at length, invalidates a traditional assumption that the power spectrum is merely determined by the spectral form factor of a quantum system.

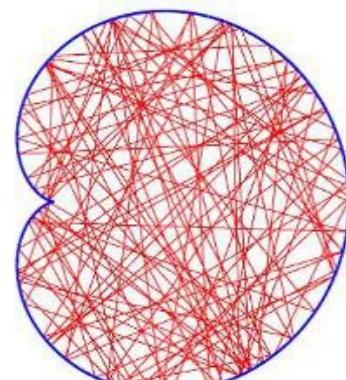
This study was carried out in cooperation with Dr. Roman Riser (postdoctoral assistant in the Department of Mathematics at H.I.T.) and Dr. Vladimir Osipov (researcher in the Department of Chemical Physics at Lund University, Sweden and a postdoctoral assistant in the Department of Mathematics at H.I.T. between 2005—2008). The research was supported by the Israel Science Foundation as a part of the project "Bringing the Theory of Integrable Hierarchies to Quantum Chaology" (ISF 647/12).


Published: 31.7.2017

חדשות וירעומים

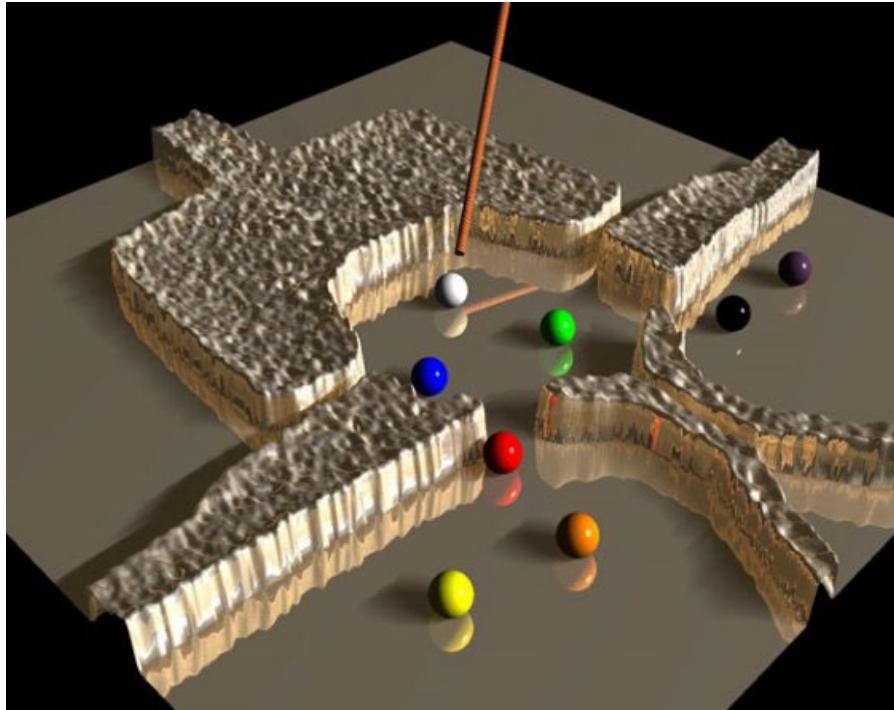

מאמר של פרופ' קנציפר ו עמיתיו נבחר כ "Editor's Suggestion" – בכתב העת היקרטיאלי PRL

מי לא מכיר סנוקר – משחק שנערך על גבי שולחן מוארך בצורה ביליארד? המאמר האחרון של פרופ' יוג'ן קנציפר [מהפכולתה למדעים](#), ו עמיתיו – ד"ר רומן ריזר וד"ר ולדימיר אסיפוב – אשר פורסם לאחרונה בכתב העת [Editor's Suggestion](#) – ו נבחר כ- "Editor's Suggestion" – עוסק בbiliardים – אך לא קלאסיים אלא קוונטיים.



מנקודת המבט של החוקרים – מתמטיקים ופיזיקאים – ביליארד מהווה מערכת דינמית שבה חלקיק (כדור) נע בקבוק ישר ומוחזר ספוקולרית מకיר לא איבוד מהירות, כאשר זוויות ההחזרה לאחר התנגשות שווה לזוויות הפגיעה בקיר (חוק ההחזרה). אופי תנועת הכדור בbiliard נקבע על ידי חוק ההחזרה ועל ידי צורת הביליארד.

קיים ביליארדים משני סוגים: מסודרים (רגולרים) וכאוטיים. לביליארד מסודר יש צורה מיוחדת, סימטרית במיוחד (כגון עיגול או ריבוע). אם עוקבים אחרי מסלול הכדור בbiliard מסודר, הוא נראה רגולרי לחולין.


מסלול רגולרי בbiliard מסודר – ביליארד עגול

מסלול לא מסודר בbiliard כאוטי – ביליארד לבבי

לעומת זאת, לביליארד כאוטי יש צורה עם סימטריה נמוכה יותר, אם בכלל (כגון ביליארד לבבי). במקרה זה, מסלול הcador נראה כמסלול לא מסודר וחלקי נוטה לבקר באחדות כמעט בכל מקום בתוך הביליארד. כמו כן, אם נתבונן בשני כדורים עם הבדל קטן מאוד בכיווני וקטורי המהירות, המרחק ביניהם יגדל מהר מאוד (אקספוננציאלית) בזמן. תכונות אלו הן סימן ההיכר המובהק של כאוטו קלאסי.

מה יקרה אם נקטין את הביליארד עד כדי כך שהcador הפור לחלקיק קוונטי (כגון אלקטרון) המתואר על ידי פונקציית גל? או, לחלופין, מה יקרה אם נחליף ביליארד החלקיים בbilard billiard (כגון mikrowave billiard)? האם ניתן לקבוע במקרים אלו – על ידי מדידות כלואו או אחרות – האם לביליארד קוונטי (או גלי) יש צורה מסודרת או כאוטית? זו אחת הביעות המרכזיות בתחום של כאוטו קוונטי. השאלה הנשאלת חשובה גם מהבחינה התיאורטית (הרי במכניקה הקוונטית, בغالל עקרון אי הוודאות של הייזנברג, הרעיון של מסלול החלקיק אינו מתאים) וגם מהבחינה היישומית – כי גנטכנולוגיות מודרניות מאפשרות ייצור ובקרה של bilard billiard קוונטיים.

הממחה של "bilard" קוונטי המשלבת בתחום "תמונה אמת"

אחד הדרכים להבחין בין שני סוגי הביליארדים – מסודר או כאוטי – היא להתבונן בתכונות הסטטיסטיות של רמות האנרגיה של חלקיק קוונטי בbilard. לפני כעשור התגלה – באמצעות סימולציות נומריות נרחבות – כי בbilard מסודרים רמות האנרגיה "מרעישות" חלקיק קלאסי המבצע תנועה בראונית ("Brownian motion") לעומת זאת, בbilard כאוטיים הרעש ברמות האנרגיה מצופה להתנהג דומה לרעש לבן. עד כה, תוצאות הסימולציות לא קייבו הסבר תיאורטי מספק.

במאמר של פרופ' קנצ'יפר ו עמיתיו הוצגה תיאוריה מדויקת של רעשים ברמות האנרגיה בעזרת התיאוריה של מטריצות אקראיות.

הינה תקציר המאמר באנגלית:
[\(https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.204101\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.204101)

Power Spectrum of Long Eigenlevel Sequences in Quantum Chaotic Systems

We present a nonperturbative analysis of the power spectrum of energy level fluctuations in fully chaotic quantum structures. Focusing on systems with broken time-reversal symmetry, we employ a finite- N random matrix theory to derive an exact multidimensional integral representation of the power spectrum. The $N \rightarrow \infty$ limit of the exact solution furnishes the main result of this study—a universal, parameter-free prediction for the power spectrum expressed in terms of a fifth Painlevé transcendent. Extensive numerics lends further support to our theory which, as discussed at length, invalidates a traditional assumption that the power spectrum is merely determined by the spectral form factor of a quantum system.

המחקר בוצע בשיתוף פעולה עם ד"ר רומן רייזר (פוסטדוקטורנט במחלקה למתמטיקה במכון הטכנולוגי חולון) וד"ר ולדימיר אוסיפוב (חוקר במחלקה לפיזיקה כימית באוניברסיטת לונדון, שוודיה, פוסטדוקטורנט במחלקה למתמטיקה במכון הטכנולוגי בין השנים 2005-2008). המחקר מתומן על ידי הקרן הלאומית למדע במסגרת פרויקט רב שנתי "כאוס קוונטי" (ISF 647/12).

המאמר זכה בפרס ראשון בקטגוריית "מחקר" ב"יום המחבר והיצירה", שנערך לאחרונה ב-HIT.